Abeydeera LR. In vitro production of embryos in swine. Theriogenology. 2002;57(1):257–73.
Lin Q, Takebayashi K, Torigoe N, Liu B, Namula Z, Hirata M, Tanihara F, Nagahara M, Otoi T. Genome editing of porcine zygotes via lipofection of two guide RNAs using a CRISPR/Cas9 system. J Reprod Dev. 2024;70(6):356-61 .
Prather RS, Lorson M, Ross JW, Whyte JJ, Walters E. Genetically engineered pig models for human diseases. Annu Rev Anim Biosci. 2013;1(1):203–19.
Hao Y, Lai L, Mao J, Im GS, Bonk A, Prather RS. Apoptosis and in vitro development of preimplantation porcine embryos derived in vitro or by nuclear transfer. Biol Reprod. 2003;69(2):501–7.
Park Y-G, Lee S-E, Son Y-J, Jeong S-G, Shin M-Y, Kim W-J, et al. Antioxidant β-cryptoxanthin enhances porcine oocyte maturation and subsequent embryo development in vitro. Reprod Fertil Dev. 2018;30(9):1204–13.
Agarwal A, Gupta S, Sikka S. The role of free radicals and antioxidants in reproduction. Curr Opin Obstet Gynecol. 2006;18(3):325–32.
Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (review). Int J Mol Med. 2019;44(1):3–15.
Liu J, Han X, Zhang T, Tian K, Li Z, Luo F. Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: from mechanism to therapy. J Hematol Oncol. 2023;16(1):116.
Alfadda AA, Sallam RM. Reactive oxygen species in health and disease. Biomed Res Int. 2012;2012(1):936486.
Bachhawat AK, Yadav S. The glutathione cycle: glutathione metabolism beyond the γ-glutamyl cycle. IUBMB Life. 2018;70(7):585–92.
Gaucher C, Boudier A, Bonetti J, Clarot I, Leroy P, Parent M. Glutathione: antioxidant properties dedicated to nanotechnologies. Antioxidants. 2018;7(5):62.
Apryatin SA, Traktirov DS, Karpenko MN, Ivleva IS, Pestereva NS, Bolshakova MV, et al. Antioxidant system alterations and physiological characteristics of neonatal and juvenile DAT-KO rats. J Neurosci Res. 2023;101(10):1651–61.
Niki E. Assessment of antioxidant capacity in vitro and in vivo. Free Radic Biol Med. 2010;49(4):503–15.
Zhang C, Li C, Shao Q, Meng S, Wang X, Kong T, et al. Antioxidant monoammonium glycyrrhizinate alleviates damage from oxidative stress in perinatal cows. J Anim Physiol Anim Nutr. 2023;107(2):475–84.
Abeydeera LR, Wang WH, Cantley TC, Prather RS, Day BN. Glutathione content and embryo development after in vitro fertilisation of pig oocytes matured in the presence of a thiol compound and various concentrations of cysteine. Zygote. 1999;7(3):203–10.
Namula Z, Sato Y, Wittayarat M, Le QA, Nguyen NT, Lin Q, et al. Curcumin supplementation in the maturation medium improves the maturation, fertilisation and developmental competence of porcine oocytes. Acta Vet Hung. 2020;68(3):298–304.
Nagahara M, Namula Z, Lin Q, Takebayashi K, Torigoe N, Liu B, Tanihara F, Otoi T, Hirata M. Effects of ergothioneine supplementation on meiotic competence and porcine oocyte development. Vet World. 2024;17(8):1748–52.
Alexeev EE, Lanis JM, Kao DJ, Campbell EL, Kelly CJ, Battista KD, et al. Microbiota-derived indole metabolites promote human and murine intestinal homeostasis through regulation of interleukin-10 receptor. Am J Pathol. 2018;188(5):1183–94.
Xiao HW, Cui M, Li Y, Dong JL, Zhang SQ, Zhu CC, et al. Gut microbiota-derived indole 3-propionic acid protects against radiation toxicity via retaining acyl-CoA-binding protein. Microbiome. 2020;8(1):69.
Zhuang H, Ren X, Jiang F, Zhou P. Indole-3-propionic acid alleviates chondrocytes inflammation and osteoarthritis via the AhR/NF-κB axis. Mol Med. 2023;29(1):17.
Zhang Y, Li S, Fan X, Wu Y. Pretreatment with Indole-3-propionic acid attenuates lipopolysaccharide-induced cardiac dysfunction and inflammation through the AhR/NF-κB/NLRP3 pathway. J Inflamm Res. 2024;17:5293–309.
Rynkowska A, Stępniak J, Karbownik-Lewińska M. Melatonin and indole-3-propionic acid reduce oxidative damage to membrane lipids induced by high iron concentrations in porcine skin. Membranes. 2021;11(8):571.
Liu A, Liu Z, Shen H, Du W, Jiang Y, Wang L, et al. Potential mechanism prediction of indole-3-propionic acid against diminished ovarian reserve via network pharmacology, molecular docking and experimental verification. BMC Complement Med Ther. 2024;24(1):316.
Chyan YJ, Poeggeler B, Omar RA, Chain DG, Frangione B, Ghiso J, et al. Potent neuroprotective properties against the Alzheimer beta-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid. J Biol Chem. 1999;274(31):21937–42.
Mimori S, Kawada K, Saito R, Takahashi M, Mizoi K, Okuma Y, et al. Indole-3-propionic acid has chemical chaperone activity and suppresses endoplasmic reticulum stress-induced neuronal cell death. Biochem Biophys Res Commun. 2019;517(4):623–8.
Ruebel ML, Piccolo BD, Mercer KE, Pack L, Moutos D, Shankar K, et al. Obesity leads to distinct metabolomic signatures in follicular fluid of women undergoing in vitro fertilization. Am J Physiol Endocrinol Metab. 2019;316(3):E383-e396.
Thongkittidilok C, Le QA, Lin Q, Takebayashi K, Do TKL, Namula Z, et al. Effects of individual or in-combination antioxidant supplementation during in vitro maturation culture on the developmental competence and quality of porcine embryos. Reprod Domest Anim. 2022;57(3):314–20.
Jeon Y, Yoon JD, Cai L, Hwang S-U, Kim E, Zheng Z, et al. Supplementation of zinc on oocyte in vitro maturation improves preimplatation embryonic development in pigs. Theriogenology. 2014;82(6):866–74.
Xu Y, Sun M-H, Li X-H, Ju J-Q, Chen L-Y, Sun Y-R, et al. Modified hydrated sodium calcium aluminosilicate-supplemented diet protects porcine oocyte quality from zearalenone toxicity. Environ Mol Mutagen. 2021;62(2):124–32.
Zhang X, Zhou C, Li W, Li J, Wu W, Tao J, et al. Vitamin C protects porcine oocytes from microcystin-LR toxicity during maturation. Front Cell Dev Biol. 2020;8:2020.
Do LTK, Luu VV, Morita Y, Taniguchi M, Nii M, Peter AT, et al. Astaxanthin present in the maturation medium reduces negative effects of heat shock on the developmental competence of porcine oocytes. Reprod Biol. 2015;15(2):86–93.
Karbownik M, Garcia JJ, Lewiński A, Reiter RJ. Carcinogen-induced, free radical-mediated reduction in microsomal membrane fluidity: reversal by indole-3-propionic acid. J Bioenerg Biomembr. 2001;33(1):73–8.
Panday S, Talreja R, Kavdia M. The role of glutathione and glutathione peroxidase in regulating cellular level of reactive oxygen and nitrogen species. Microvasc Res. 2020;131:104010.
Hansen JM, Harris C. Glutathione during embryonic development. Biochimica et Biophysica Acta (BBA). 2015;1850(8):1527–42.
Poeggeler B, Pappolla MA, Hardeland R, Rassoulpour A, Hodgkins PS, Guidetti P, et al. Indole-3-propionate: a potent hydroxyl radical scavenger in rat brain. Brain Res. 1999;815(2):382–8.
Mu X, Feng L, Wang Q, Li H, Zhou H, Yi W, et al. Decreased gut microbiome-derived indole-3-propionic acid mediates the exacerbation of myocardial ischemia/reperfusion injury following depression via the brain-gut-heart axis. Redox Biol. 2025;81:103580.
Yu H, Qi L, Li H, Su L, Bai Y, Liu Y, et al. Indolepropionic acid protects against renal fibrosis due to unilateral ureteral obstruction by enhancing the Nrf2 signaling pathway. J Renin-Angiotensin-Aldosterone Syst. 2025;26:14703203251350803.
Kim MJ, Kang HG, Jeon SB, Yun JH, Jeong PS, Sim BW, et al. The antioxidant betulinic acid enhances porcine oocyte maturation through Nrf2/Keap1 signaling pathway modulation. PLoS ONE. 2024;19(10):e0311819.
Wang YQ, Dong YW, Qu HX, Qi JJ, Yan CX, Wei HK, et al. Oleanolic acid promotes porcine oocyte maturation by activating the Nrf2/HO-1 signalling pathway. Theriogenology. 2024;230:203–11.
Feng Z, Song J, Lin C, Wu S, Wang Y, Hui Q, et al. Enhancing porcine oocyte quality and embryo development through natural antioxidants. Theriogenology. 2025;232:96–108.
Hardeland R, Zsizsik BK, Poeggeler B, Fuhrberg B, Holst S, Coto-Montes A. Indole-3-pyruvic and -propionic acids, kynurenic acid, and related metabolites as luminophores and free-radical scavengers. Adv Exp Med Biol. 1999;467:389–95.
Durlinger AL, Kramer P, Karels B, de Jong FH, Uilenbroek JT, Grootegoed JA, et al. Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrinology. 1999;140(12):5789–96.
Howard HJ, Ford JJ. Relationships among concentrations of steroids, inhibin, insulin-like growth factor-1 (IGF-1), and IGF-binding proteins during follicular development in weaned sows 1,2. Biol Reprod. 1992;47(2):193–201.
Han T, Björkman S, Soede NM, Oliviero C, Peltoniemi OAT. IGF-1 concentration patterns and their relationship with follicle development after weaning in young sows fed different pre-mating diets. Animal. 2020;14(7):1493–501.
Jazwiec PA, Li X, Matushewski B, Richardson BS, Sloboda DM. Fetal growth restriction is associated with decreased number of ovarian follicles and impaired follicle growth in young adult Guinea pig offspring. Reprod Sci. 2019;26(12):1557–67.
Tanihara F, Hirata M, Iizuka S, Sairiki S, Nii M, Nguyen NT, et al. Relationship among ovarian follicular status, developmental competence of oocytes, and anti-Müllerian hormone levels: a comparative study in Japanese wild boar crossbred gilts and Large White gilts. Anim Sci J. 2019;90(6):712–8.


